教你玩转每道菜背后的大数据(上篇):餐饮行业数据运营的时代已来临
这是一篇关于餐饮行业数据分析的重磅干货,能切实帮助餐饮领域的运营童鞋解决:如何砍菜单、如何管理用户、甚至如何降低发短信广告成本等常见问题。就算你不做餐饮行业的运营,这篇文章也能手把手的教你通过数据分析的方法,科学合理的做用户分群、监测留存率、以实现精细化运营,这可是每个互联网公司都想做的事情。
全文共8147字,整体阅读时间40-50分钟,本次推送将全文分成了上中下三篇 ——
- 上篇主要内容有:1.餐饮行业数据运营的时代已来临. 2.如何构建数据运营监测中心。共2163字。
- 中篇主要内容有:3.如何通过波士顿矩阵分析,砍掉菜单里不受欢迎的菜品。 4.如何通过分析用户购买行为,确定菜品是“留客”还是“赶客”。共2145字。
- 下篇主要内容有:5.如何通过RFM模型,为用户分群,实现精细化运营 6.不得不考虑的用户获取成本 。共3839字。
餐饮行业数据运营的时代已来临
1.餐饮行业对数据运营概念缺失
餐饮行业是一个历史悠久的行业,我相信每一位掌柜的脑袋里,都有一副“算盘”时刻盘算着门店的运营情况,但绝大部分掌柜真的只把“算盘”存在脑海里,这也是为什么在餐饮行业里,大家一直会听到这样的困惑:“一家店盈利,三家店打平,再开下去就亏了”。只凭一人的脑力,很难计算统筹如此多门店的利润,是时候用更科学的手段,让电脑帮忙去盘算生意了。
虽然电脑盘算生意需要成本模型,不同的餐饮行业,成本模型也不同。但我想本质是相通的,餐饮行业有四个重要节点“进、销、存、管理运营”,这些数据都不难获得,要求一线员工记录到位,进销存数据就能落到纸面上。
基础数据有了,大多数掌柜却只做月结汇总,忽略了整个过程,很多潜在的盈亏改善点就是这样被错过的。比如:某掌柜月结汇总是发现本月采购量远远大于销售量,却没办法追溯原因。某掌柜月结汇总时才发现,大蒜上星期处在历史最低价,却没能及时囤货,现在涨回来了,后悔莫及。
想要发现这些机会,纯靠人脑监控计算太难,更好方法还是让电脑来帮忙记录数据、给出分析。
2.互联网外卖行业的兴起,促使商家开始了解数据运营
2014年,互联网外卖送餐O2O开启了一场战争。那时一家驴肉火烧的老板告诉我,平台每单起步补贴能达到12元,而他家的驴肉火烧本来就卖12元,为了避免爆单,老板不得不提价到15元去卖。更何况,那时不止一个平台给补贴。
餐饮商家由此开启了多平台外卖之路,但商家对多外卖平台的局面,可谓又爱又恨。爱多外卖平台带来的机会,恨每天需要在多个平台维护商品、处理评价、申报满减、活动、对账、调整库存……甚至每天卖了多少钱,都得多个平台统筹计算才知道,那叫一个累啊。
这种形式,却也让之前只习惯月结汇总的掌柜,开始关注每天的流水、每家外卖平台的客流量,互联网外卖行业的兴起,逼着掌柜们走向了数据运营之路。
3.外卖平台多,数据乱,无法满足数据运营要求
懒是人类第一生产力,更是程序员的第一生产力。我在踏入餐饮行业后,第一个需要克服的问题,就是如何在多外卖平台的情况下,提高数据处理的效率。
简言之,就是帮助掌柜们跨平台计算外卖订单量、客流量、库存量,甚至监控单个菜品的售卖情况、商家菜品打折的活动情况……
为此,我调研过市面上10余款餐饮系统、多平台系统。也接触过一些融合系统,结果都令人失望。毕竟大多数外卖平台自身就在快速迭代,开放接口不完善不稳定、抓出来的数据也三天两头出问题。建立于其上的融合系统就更是BUG频出。
所以我决定建立一个灵活、便捷、且能够监控多渠道的数据监测中心。
如何构建数据运营监测中心
一个正常的数据系统构建流程,应该包括:确定需求、获取数据、清洗数据、分析建模、解读表达、可视化等等,这也是我原本的构想,但这个完整的过程太复杂,大家的兴趣并不大。
那么,我先分享如何通过BDP构建属于自己的数据运营监测中心,有机会再分享如何建立一个完整的数据系统。
1.如何根据订单数据建立分析模型,建模有何用?
餐饮行业的订单数据包含很多基础信息,我们需要从不同视角去分析解读这些信息,用以辅助决策。
通常,一条订单中至少包含时间、来自哪个外卖平台、菜品名称、菜品数量、价格5个数据属性,如果我们构想一个数据立方体(DATA CUB)出来,这些属性就是立方体的维度。
虽然只有下单时间、菜品名称、平台三个维度。但根据这个立方体,已经能解决很多掌柜急需了解的问题了。
比如:
- 年报、季报、周报、日报我都能查看吗?(钻取,上卷)
- 能查看任意时间段下,某道菜品甚至几道菜品的销量对比吗?(切片、切块)
- 能全局观察,对比几个外卖平台的销售情况吗?(旋转)
但实际上,订单还会包含菜品数量、价格、送餐地点等数据,集合这些数据,可以构建出一个多维数据模型(画不出来),姑且先用这个立方体做例子。
2.一家餐馆,需要具备哪些“视角”以分析数据
“横看成岭侧成峰”是对置身于数据海洋最形象的形容,不同的视角能得到不同答案。为了能全面了解和分析经营情况,我们固化了十多个常用“视角”:分别包括:
订单分析、周订单分布、月订单分布、菜品销量分析、流量分析、用户跨平台分析、用户平台对比、配送分析、评价词云。
其中的每一个仪表盘,都能拆分出不同的表格,以做便于详细对比。其中的每一个仪表盘,都能拆分出不同的表格,并提供不同的切片、切块视图,配备了全局筛选(主要是时间和平台)可以对整个仪表盘内的图做同一控制。
如订单分析就包含了:
订单量、平台订单对比、分平台订单量
另外,平台的任意一个图标都可以展开查看更多细节,可以实时做出更丰富的筛选、钻取、上卷、排序等变换。
如何通过数据分析合理调整菜单
其实每一条订单数据都包含着一个重要信息:菜品明细,虽然这类信息在获取上因为跨平台的问题,归纳整理起来很麻烦,但整理好这些数据,却能辅助我们做很多决策。
1.通过数据分析,确定主力销售菜品
总结几大平台的数据之后,我们可以总结出一张菜品销量走势图,并由观察销售金额累计、平台销售数量累计,查看哪些菜品使我们的核心菜品、哪些是我们的主要销售平台。并根据这个结果,调整菜单、调整平台投入力度。
通过分析时间线上销售金额,我们还可以观察一道菜品在促销、调价等活动后的售卖情况,及时做出调整。
2.通过数据分析,了解套餐配菜是否合理
如果你的餐厅里也有单品和套餐,相信你也会关心究竟用户是单品点的多,还是套餐点的多。
也可以检查套餐配菜是否符合用户诉求
3.通过数据分析,调整菜单排序
解析用户收单最爱点哪道菜也非常重要,反复参考这些拉新效果好的菜品,以调整外卖APP的菜单排序,这将有助于整体提高门店的下单转化率。
找到新用户收单最爱点哪些菜品后,可以继续分析原因——
是哪些因素让菜品脱颖而出呢?价格?图片?描述?首单用户是在没吃过这道菜的情况下,根据菜单在外卖APP上的呈现效果点菜的,调整外卖APP的菜单呈现,也有助于提升转化率。
作者:Kener-林峰,数据可视化领域专家,北邮计算机、国家重点实验室交换与智能控制研究中心、前百度资深研发工程师,百度数据可视化方向奠基人之一,凤巢业务系统前端技术leader,Echarts 作者
本文由 @Kener-林峰 原创发布于人人都是产品经理。未经许可,禁止转载。
你好,可以私下聊聊吗?
文中您提到层调研过数几个餐饮系统,能说一下都有哪些吗?据我了解都有侧重提供相关的数据统计分析
您好!请问中篇和下篇什么时候能够发布,我比较期待 😳
请教一下,你是用什么做数据可视化呈现的