数据分析:核心思路三步走

旋哥
5 评论 10294 浏览 52 收藏 10 分钟

编辑导语:数据在产品的各个流程都能起到至关重要的作用。那么,当数据出现问题时,该如何进行有效的数据分析、并最终达到解决问题的目的呢?本篇文章里,作者就提供了一个相对结构化的解决思路,希望能对你有所帮助。

不管你是产品、运营、还是市场,是否经常遇到以下几种情况:

  • 上线某个新产品、新功能,要监测该产品/功能的效果,既要看总体表现,又要看细分维度;
  • 策划某个营销活动,要明确活动的目标用户群体、用哪种方案能够带来最优的活动效果;
  • 投放某个渠道,渠道 ROI 又出现了较大的波动,需要找出数据波动的原因。

针对一个又一个问题,如果没有清晰的问题分析思路,即使解决了当前的问题,等你遇到新的问题又会无所适从。那么数据分析这件事情,不管是放在产品、运营、还是市场,都是一门必修课。

从本质上,数据分析最终目的就是解决问题。

有可能你做的项目没有一个专门的数据分析平台,没有数据后台,但这并不妨碍你去思考这个数据表现出来的问题该如何解决(可能 Excel 就可以解决很多你遇到的问题了)。

今天要分享的,就是当你在工作中遇到了某个数据出现问题的时候,怎么去分析某个数据问题的思路。

既然是解决问题,那么一定涉及到解决问题的思路。

给大家介绍一下之前考项目管理中的【问题解决工具】,希望能够帮助大家在用数据驱动解决问题的过程,有一个结构化的解决思路。

一、核心要素

当发现出现某个问题,或者应对某个挑战的时候,使用结构化的问题解决方法可以有助于制定长久有效的解决方案,主要包含以下核心思路:

二、PDCA 戴明环—Plan-Do-Check-Act

常用的闭环迭代框架戴明环 PDCA,也是解决问题或者说可以应用到平时工作上的方法,帮助你做结构化的思考。

主要包括计划(Plan)、实施(Do)、检查(Check)、执行 (Act) 4个步骤,循环迭代,不断提升。

其实还可以加一个环节- T (Think) 思考总结。

结合问题解决工具和数据分析的常用流程,可以提炼出数据分析的核心思路。

三、核心思路

1. 发现数据问题后,定义 X 问题

XY 问题:你想解决问题 X,但觉得 Y 可能是解决 X 问题的方法,但是你不知道 Y 应该怎么做,于是你去问身边的人 Y 应该怎么做;但是 Y 不一定是 X 的解决方法,通俗地讲叫作 “过早下结论”。

所有分析的源头,必须是要先识别要解决的重要问题是什么,为什么是最重要的。当你确定了是什么,和为什么重要,那么也就逐渐明确了数据分析的目的。

1)定义 X 问题技巧

可以根据不同类型的问题,用一个包含”如何、是否、原因是什么”问句来描述,比如:

  • 验证类 —— 有了假设和多个可能解决的方案,验证结果:“策略A,B,C哪种方法可以提升转化率”;“策略A是否可以提升转化率”。
  • 找原因类 —— 某个数据出现了剧烈波动,寻找背后原因以及解决方法: “导致转化率急剧下跌的原因是什么”。
  • 预测类 —— 寻找事物发生的规律,来预测接下来即将发生的事件,比如 “学生放假对课程销售转化率是否有影响”。

2)问题具体化,不可太过于宽泛,否则数据收集会变得很困难。比如某个产品数据有没有变好?

2. 定位问题,识别根本原因

那么经过定义 X 问题,明确了数据分析的目的后,就需要开始找问题出在哪儿。那么就有几个数据分析的方法了,给大家分享几个常见的分析方法。

1)全链路分析

对整个环节的每个节点进行分析,比如大家熟知的漏斗模型,AARRR 模型,都是典型的全链路分析。

以及业务模型中的用户生命周期、产品生命周期等,针对产品,或者运营整体的每个节点进行分析。

全链路分析的核心步骤:

  1. 梳理链路关键节点,确定关键节点的数据指标。
  2. 针对每个关键节点进行数据洞察,查看问题点和增长点

2)组成因子分析

把整体目标按照某种分类标准,分解成不同的组成因子。因为整体目标只能看到目标达成的结果,不知道是如何达成的,执行细节是如何。


组成因子拆解的技巧:

  1. 尝试多种方式、不同维度;
  2. 优先考虑项目团队习惯的拆解思路。

3)影响因子分析

很多时候,因子对结果的影响是定性的,而不是像组成因子一样是定量的,所以并不能完全把结果拆成多个因子相加。那这个时候可以用影响因子分析,列出对结果有影响的因子逐个分析。

比如说销售额,影响因子有商品、会员、客服、流量、活动等,但你不能说销售额=商品+会员+客服+流量+活动,对吧?

4)枚举法

简单粗暴地列举出所有可能影响这个数据的因素。枚举法大概会有以下 3 大步骤:

在列举的时候,也可以用到亲和图,分类别列举。

并且一定要有排序思维(将某个指标降序或者升序排列)。比如说在分析某个竞争对手的自然搜索关键词的时候,面对大量的数据,先确定关注哪一部分数据能带来最大的收益。

比如我在分析竞品 Google Organic Search 关键词流量的时候:

  • 分类枚举不同的关键词(非品牌词有哪些、品牌词有哪些);
  • 对不同类别的词的数据进行排序:;
  • 将非品牌词的 Search Volume 降序排列:看看哪些词汇用户搜的最多;
  • 将品牌词的 Traffic(%)降序排列:看看哪些品牌词带来的流量占比最大。

3. 提炼出有效的、明确的数据结论

优秀的数据结论,并不是得到一堆图表,它是有价值的结论。培养一种 “以终为始” 的思维,从最终结果出发,反向分析过程或者原因,寻找关键要素,采取相应的策略,从而达成结果并且解决问题。

那么怎么样得到有价值的数据结论呢?一般有这么几个步骤。

  1. 明确业务目标;
  2. “增减” 分析:增加收益、减少损失。增加收益,即增加收入、提升转化率、优化体验、增加用户参与度等;减少损失,即减少失败率、流失率等;
  3. 对业务进行分析(步骤2:定位问题、识别根本原因);
  4. 为自己的结论给出数据支撑。

 

本文由 @旋哥 原创发布于人人都是产品经理。未经许可,禁止转载。

题图来自 Unsplash,基于 CC0 协议

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. 作者大大,我能总结一下您的知识点。然后转发给其他小伙伴看吗。

    来自广东 回复
  2. 干货满满!点个赞!

    来自广东 回复
    1. 确实不错

      来自北京 回复
    2. 优秀的数据结论,并不是得到一堆图表,它是有价值的结论

      来自北京 回复
  3. 结构非常清晰,赞赞赞

    来自广东 回复
专题
16629人已学习16篇文章
对于很多软件工程师来说,工作内容都与界面设计有很大的关联。本专题的文章分享了界面设计方法。
专题
13225人已学习13篇文章
本专题的文章分享了搜索策略产品经理必读系列。
专题
34764人已学习13篇文章
有多少用户痛点,你是听回来的,而不是经过深思过后找出来的。
专题
16462人已学习16篇文章
私域模式已完成从探索到落地的转换,许多企业也纷纷落局。而基于私域衍生出的SCRM工具,也成为私域运营必不可少的利器之一。本专题的文章分享了SCRM工具的搭建以及相关业务运用场景。