MECE:数据分析师都要掌握的准则

2 评论 10159 浏览 48 收藏 11 分钟

编辑导语:MECE分析法也就是对于一个重大的议题,能够做到不重叠、不遗漏的分类;而且能够借此有效把握问题的核心,并成为有效解决问题的方法;本文作者方向了关于MECE的解释与分享,我们一起来看一下。

几乎所有数据分析的书、教程、文章,都很政治正确写上MECE作为数据分析的准则。

这东西很快又成为一个数据领域的“咕咚来了”:

  • 到底啥是MECE?
  • 为啥非得MECE?
  • 我做的是不是MECE?

一大堆问号没人回答,今天我们系统讲解一下。

一、什么是MECE

MECE,是Mutually Exclusive Collectively Exhaustive的缩写,简单归纳成8个字:相互独立,完全穷尽;听起来就很厉害呀,如果能完全穷尽,那分析肯定是无懈可击。

问题是:怎么做到呢?来个最直观的例子:

问题场景:项目组的张雨萱小妹纸又迟到了!上个月居然迟到了19天!原本同事们迟到个两三天,HR是不会管的,可这一个月19天迟到也太夸张了,于是告到领导那里。

妹纸哭得梨花带雨地来投诉:

  • 那项目组好多人都迟到呀,你们也不管;
  • 那遇到下大雨全程堵车呀,你们又不管;
  • 那临近项目上线,就是搞到很晚呀;
  • 那前一天加班了,就是会到的晚呀……

问:该咋分析实际情况?

二、不用MECE的恶果

新手数据分析师,马上拿个笔在这列清单:

  • 迟到原因1:堵车
  • 迟到原因2:下雨
  • 迟到原因3:项目上线
  • 迟到原因4:加班
  • 迟到原因5:自己懒
  • 迟到原因6:其他

这么干的话,他们很快会发现:各种原因是交织在一起的!下雨了又自然会堵车,加班和项目上线也是经常重叠的,懒和所有问题是重叠的;然后又有可能既下雨又加班又很懒……根本扯不清到底影响多少,即使都扯清了,还有个其他在等着呢。

于是又情不自禁的想要百度《多因素独立检验模型如何构建》,或者去微信群问“有没有头腾阿公司的HR分析大佬,急,在线等!”了。

这就是没有用MECE法则拆解问题的坏处:数据分析毫无逻辑,变成了单纯的拉交叉表;实际上很多新人就是这么干的,遇到问题,把渠道、时间、产品、用户等维度拉出来,和问题指标一一交叉,交叉完看到哪个柱子低了:就它了!最后被人质问:多种原因交织的时候怎么区分?就回答不上来了。

三、MECE如何操作

1. MECE第一步:确定目标

注意,现实中就是一个问题多个因素缠绕在一起的,因此到底怎么把问题归类,首先取决于决策的目标:想赶尽杀绝还是可以放人一马;比如眼前的问题,首先要做的是分清楚:到底是想怼妹纸,还是帮妹纸。

  • 怼人:严格要求,只要参合一点个人因素,就是你的问题!
  • 帮人:宽松要求,只要发现能用外因解释,就不会归罪个人。

明确了目标,就能在多因素混杂的时候把握好尺度,从而避免思路跑偏,直扑核心问题。

2. MECE第二步:分步骤梳理问题

注意,相互独立,完全穷尽,是MECE操作完的最终结果;并不是要求一步到底,一下就能穷尽所有原因。

在每一层原因分解的时候,用二分法才是最便捷的实现相互独立,完全穷尽的要求,因此分析问题的逻辑层次可以很多,但每一层用的指标尽量少,切分的清晰一点。

比如,如果定了:帮人,看看是不是真的工作量太多,这个大目标;那么分解问题的时候,第一层可以切:加班/未加班;这是一个二分类,肯定是独立+穷尽了;然后把所有前一日有加班记录的日期,都标为:有加班(如下图)。

都快2021年了,居然还有数据分析师不会MECE

第二层,可以把大家集体加班,还是只有一个人加班区分出来;这又是个二分类,在这一层还是独立+穷尽哦(如下图)。

都快2021年了,居然还有数据分析师不会MECE

第三层,自己加班,也有可能是工作量太大引起的,所以这一层可以再分解(如下图)。

都快2021年了,居然还有数据分析师不会MECE

注意:分析的最终目的是能指导业务改善,因此分析逻辑应指向业务可以落地的地方;比如这一条逻辑的拆解,是完全没有考虑天气问题的。

因为工作量多少,是领导可以安排的;法不责众,是领导可以接受的;在业务能动性范围内讨论的时候,尽量不要扯业务不能控制的因素,这样能直接导向一个有用的业务结论;而不是一上来就扯天气,最后结论是:“请领导学习如何呼风唤雨的魔法”——这样铁定被批。

类似地,在分解第二逻辑分支的时候,既然大目标已经定了:要帮人;就可以用“下雨了,全城堵车”之类的理由来开脱。

注意,这里又有个小技巧:选择切入维度,选可量化的维度

比如下雨“下雨了,全城堵车”听起来是个好理由,但是:

  • 如何量化下雨?
  • 小雨、大雨、暴雨?
  • 小雨也堵车?
  • 堵车就一定迟到?

这些都很难量化清楚,所以可以换个更简单的量化方法;“下雨了,全城堵车”指向的结果是:“大家都会迟到”;那就直接看“大家是否都迟到了”就好了(如下图)。

都快2021年了,居然还有数据分析师不会MECE

3. MECE第三步:代入数据量化

做数据分析,不谈数据就是耍流氓,定好分类逻辑以后,就得按逻辑填入数据,最后数据说话。

脱离计量谈毒性就是耍流氓,因此代入数据后,首先得看各类型问题的占比;问题比例本身就能很大程度上说明问题。这也是用MECE法拆解问题的最大优势:避免被个例子带歪,大家看着数说话(如下图)。

都快2021年了,居然还有数据分析师不会MECE

4. MECE第四步:导出业务结论

最后,可以导出业务结论了。业务结论包含两个方面:

  • 来自整体结构的判断,小妹纸到底是主观懒,还是客观原因多。
  • 对每一个细化问题点的小结论,到底要辅导工作,还是简单放过去。

做完了推断,还能直接设定观察指标,持续观察问题走势。

观察包括:

  • 数量变化:是不是迟到天数减少了。
  • 结构变化:是不是因为客观原因的天数减少了。
  • 细化问题点变化:因为工作分配导致加班天数,是不是在消减工作量后减少了。

都快2021年了,居然还有数据分析师不会MECE

这样分析逻辑+业务行动+数据跟踪,就能很清晰的看到是否在数据指导下解决了问题,从而达到良好的数据驱动的作用。

四、阻碍MECE发挥作用的障碍

对数据分析师而言,最大的障碍来自:不懂业务,不会沟通业务,不会推动业务;把数据分析当写作业,反正数据库里有这几个现成的维度,我把所有的对比都做出来,哪个低了就说哪个有问题好了。

对业务方而言,最大的障碍来自:特立独行,不看数据;逮住几个个案讲的头头是道,怎么用数据量化,怎么用数据考核,一概不谈;要么干脆不动动上升到态度层面,更没法量化考核了。

数据分析的优势,正是能够对抗业务发展中个案、情绪所带来的判断失误;因此认真梳理业务逻辑,清晰目标,逐级推导直到落地监控,才是拨云见日的好办法。

当然,看完以后,有同学会说:能举个运营的例子不?下一篇见。

#专栏作家#

接地气的陈老师,微信公众号:接地气学堂,人人都是产品经理专栏作家。资深咨询顾问,在互联网,金融,快消,零售,耐用,美容等15个行业有丰富数据相关经验。

本文原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议。

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. 受用了

    来自四川 回复
  2. 金字塔原理

    来自广东 回复