数据分析实战:如果我为共享单车类产品做数据分析
很多人都在问:如何提高数据分析能力?笔者(申悦)认为一方面要掌握基本的分析框架和分析思路,另一方面就要不断实践。一种很好的实践方式就是:分析行业内典型产品的设计、运营思路,假设自己就是该公司的数据产品经理,你会如何对其进行分析。
前一阵在“在行”上就遇到一个案例,学员想了解共享单车类产品的数据分析思路,本文就针对这个案例整理一二,供读者参考。如果读者中有摩拜或ofo的同学,麻烦帮我参谋下思路是否靠谱哈^_^。
步骤一:明确用户是谁
以摩拜为例,其产品可能的目标用户有2类:用车方、维护方。用车方就是车辆使用者,维护方则是车辆提供者。用车方的诉求是随时随地有车骑,且付费后骑行体验要良好。维护方的诉求则是以最少的车辆服务最多的用车方,并从用车中得到收益。
步骤二:明确用户使用场景
从维护方角度看,其简单场景如下图:
从用车方角度看,其场景如下图:
明确使用场景、使用流程的原因在于:第一,我们的数据都来源于这些场景中;第二,我们需要通过分析这些数据,让用户每一步过程都顺利进行,避免流失;第三,还要让企业利益最大化,从而进一步让利用户。
步骤三:明确分析目标
经过人群定义和流程梳理,针对共享单车,我们可简单将分析目标定义为:
- 提高成功骑行次数——用户利益最大化
- 提高毛收入——企业利益最大化
步骤四:拆解目标
数据分析的思路就是将目标层层拆解,从每个子指标中发现问题。基于以上目标,可拆解为:
- 成功骑行次数 = app启动次数 x 每启动扫码开锁率 x 成功开锁率 x 成功结束率
- 成功骑行次数 = 每人每日行程次数 x 人数
- 毛收入 = 充值收入 – 投入成本 = ((每充值金额 – 欠费金额) x 充值次数) – ((每车成本 + 维护费用) x 车辆数量 )
注:以上拆解因人而异,因经验而异,从不同角度可得出不同公式,具体要根据实际运营目标进行调整。
步骤五:明确数据观察者角色
拆解出的子指标,需要呈献给不同角色的人群查看,以此来进行不同维度的分析,因此在分析前也要明确这些角色,例如:
- 决策层:关注核心指标、交易指标、时段趋势
- 维护组:关注车辆状态、位置、轨迹、故障率、用户反馈
- 运营组:关注骑行次数、充值情况、押金情况、欠费情况、信用积分
- 产品组:关注骑行流程、交互路径、用户反馈
- 开发组:关注请求失败率、App崩溃数
步骤六:明确数据度量
依据不同角色,可将拆解出的子指标进一步汇总整合,组成不同的统计度量值。这一过程中有一点要注意:每产出一份度量值,都要给出目的。也就是说看这个度量值能得出什么结论。没有结论的数值是没有意义的。如下所示:
核心数据
- 评估推广效果——注册用户数
- 评估活跃程度——启动次数、活跃用户数
- 评估业务健康程度——成功骑行次数、每启动骑行率(用车密度)
- 评估现金流健康程度——总入账、总出账、充值金额、欠费金额、车辆总成本
- 评估车辆健康程度——车辆总数量、故障车数量
运营数据
- 评估推广效果——注册用户数、下载点击数
- 评估活动运营效果——充值用户数、邀请注册用户数、成功骑行次数、积分增长/消耗量
- 评估用户质量——行程次数排行、骑行距离排行、信用积分排行、充值排行、欠费人数、认证人数
维护数据
- 车辆使用总览——车辆总数+车辆位置实时呈现——未使用/使用中/故障中/预约中
- 评估车辆使用率——使用车辆数/总车辆数
- 评估车辆故障率——故障车辆数/总车辆数
- 评估车辆闲置率——连续N日未使用车辆数/总车辆数,以及闲置车辆位置
产品数据
- 评估需求满足程度/车辆调度效果——每启动骑行率
- 评估产品使用情况——成功骑行次数、异常骑行次数、平均骑行里程、平均骑行时长、日骑行频率、启动次数、平均骑行天数、预约操作成功率
- 评估产品操作效果——充值路径、注册路径
- 评估产品使用异常情况——平均每次开锁成功率
- 评估用户骑行习惯——骑行轨迹聚合,为调度路线做参考
- 评估用户满意度——用户反馈好评数/用户反馈数
财务数据
- 用户金额:充值流水、充值次数、充值金额、充押金金额、余额不足金额、押金退款金额
- 维修金额:车辆生产成本、车辆维修成本
注:以上数据仅为举例,要根据实际需求调整。
步骤七:明确数据维度
有了度量值,就要思考可以通过哪些维度查看这些值,也就是要定义数据维度。常见的维度包括:
- 按时间:小时、日、周、月、季度、年度……
- 按地区:按省、按市、按区……
- 按渠道:邀请注册、扫码注册、广告点击注册……
- 按类型:已认证/未认证、已充值/未充值……
- 按位置:GPS地图定位
以上维度也要再根据需求不断调整、扩展、优化。
总结:
以上七步进行完毕,一个基本的共享单车数据分析框架就搭建完毕了。作为数据产品经理,一方面可基于此设计统计系统功能;另一方面可依此对不同人群定期产出数据分析报告了。但以上步骤只是完成了冰山一角,如何在观察数据后,对数据的变化合理归因,并对产品、运营策略的优化提出改进意见,才是真正需要深入研究的!
作者:申悦 6年产品人 前网易新闻产品经理,现红演圈公司产品VP
本文由 @申悦 原创发布于人人都是产品经理。未经许可,禁止转载。
请问每启动骑行率指的是?
我认为作者从“不同角色”角度来考虑指标建立的思路非常好,值得学习
楼主说的很全面,如下一点想法,一起聊聊
各家共享单车,在经营模式上大同小异,但是在细节上会有不同,这些的背后肯定是数据运营在起作用
1、 从用户角度的体验入手,侧重关注2-3大指标:
2、从差异化入手,侧重关注2-3个指标:
如上,就是Focus 专注,然后再是拆解 -> 反思->完善; 但,首先是关注 ;
谢谢分享,Get.
有几点建议,可以参考哈。
1.可以进一步对目标用户进行分析,
目标用户是车辆使用者都知道,进一步分析,具体是哪些人群?为什么是这些人群?不同年龄段的人诉求又不一样。-用户细分
Example:
ofo“出校入城” 以大城市的高校大学生为主,以及大城市的上班族等
年轻群体接受新兴事物能力比较强,追求时尚,
中低端人群追求性价比,
城市交通拥堵严重,白领时间紧张···
2.用户使用场景的流程图中有几点不完善的地方,
起始点,产生出行意图不完整,我还可以打车、步行。可以括号备注(共享单车)
之后还有下载APP/打开APP这一步。
沿路寻车没找到后不仅仅是放弃,还有可能继续沿路寻车,即一个闭环。
···
写得蛮好的,从管理、产品、运营、维护都做了分析,个人觉得还可以增加几点
1、增加大数据的分析,为下一步产品运营提供指导方向;
2、增加服务类的分析,分析用户在交互使用中的数据,文中包含有APP侧的,还需要从用户侧增加服务类的内容,针对现有用户需求、存在问题,提出下一步的方向
不太明白,“服务类”数据,怎么理解?举个例子?
mark
😉 学习了!谢谢LZ!
好文章,学习了!感谢分享!