如何进行用户分层,实现精细化运营?利用RFM用户价值模型
本文作者主要是分享一下RFM模型在用户分层精细化运营领域的应用方法和简单的实操案例。enjoy~
在用户运营领域,有一个叫做RFM的词,相信很多人看到过,或许感觉比较专业就没有继续深入;或者有些文章涉及到了python等数据处理手段,望而却步;又或者因为这个词跟电商关系紧密,所以非电商的运营伙伴就选择了放弃学习。
今天主要是分享一下RFM模型在用户分层精细化运营领域的应用方法和简单的实操案例。
RFM模型更上一级隶属于用户价值模型,在用户价值模型中有两个方向:
- 一个是基于用户生命周期,也就是时间和用户在产品内的成长路径进行的生命周期模型的搭建
- 另一个就是基于用户关键行为进行的RFM模型的搭建,本次只说用户价值模型中的RFM模型
RFM模型有哪些好处呢?当我们确定了RFM模型之后,从而可以决定针对哪些用户在发送短信时,加上前缀“尊敬的VIP用户”,哪些用户加上前缀“好久不见”。也可以帮助企业判断哪些用户有异动,是否有流失的预兆,从而增加相应的运营动作。用处之大,且看下文。
关于RFM的科普大家可以自行在网络上搜索,这里不做赘述,先说一下三个字母的意思:
- R:最近一次消费(recency),代表用户距离当前最后一次消费的时间,当然是最近一次消费的时间距今越短越好,对我们来说更有价值,更可能有效的去触达他们。
- F:消费频次(frequency),用户在一段时间内,在产品内的消费频次,重点是我们对一段时间的定义。
- M:消费金额(monetary),代表用户的价值贡献。
最早是将R、F、M每个方向定义5个档,5*5*5=125种用户分类,对大部分运营和产品来说,过于复杂,大家可以不用去了解为何分成5档这样的历史问题。现在我们已经把R、F、M每个方向定义为:高、低,两个方向,我们找出R、F、M的中值,R=最近一次消费,高于中值就是高,低于中值就是低,这样就是2*2*2=8种用户分类,如下图:
所以,如果我们能够找出产品内用户隶属于以上8类中的哪一类,我们就可以针对性的制定运营策略。
在做具体的RFM搭建之前,我再强调一次,RFM模型不仅适用于电商领域,其他领域同样适用。只要我们找出跟R、F、M相关的数据字段,做好字段的定义,证明这些字段是影响当前业务进展的最为关键的几个维度即可:
- R:最近一次登录时间、最近一次发帖时间、最近一次投资时间、最近一次观看时间
- F:浏览次数、发帖次数、评论次数
- M:充值金额、打赏金额、评论数、点赞数
上面这些都是在其它领域对R、F、M的定义,具体要根据实际业务情况进行评估。比如你是豆瓣的运营负责人,发现过去一周,豆瓣图书版块的整体流量下降10%,同时,文学书籍类别下的分享帖环比下降5%,你要去分析原因,可以选取对应R、F、M的字段分别为:登录数、发帖数、互动数。
- 图书版块整体流量下降,可以理解为这个版块的活跃下降,可以看下过去一周的登录数。
- 文学书籍类别下的分享帖下降5%,可以看下过去一周的发帖数。
- 同时,流量下降,我们可以看下是否因为帖子质量相对下降,导致用户的互动(评论、收藏等)下降,进而导致流量下降。
下面我以自己抓取的1w条某导购平台的一套数据为例,带大家使用最简单的方法,进行这套数据中用户RFM模型的搭建,找出这8个类别的用户。
RFM模型搭建步骤如下:
- 抓取R、F、M三个维度下的原始数据
- 定义R、F、M的评估模型与中值
- 进行数据处理,获取R、F、M的值
- 参照评估模型与中值,对用户进行分层
- 针对不同层级用户指定运营策略
(1)抓取R、F、M三个维度下的原始数据,我抓取是最近一次消费时间、消费频次、消费金额。上文已经说过,在做各自业务分析时,可以根据实际情况选取R、F、M的数据字段。下表是1w条数据中的13条进行展示:
(2)我将1w条数据的最近一次消费时间、消费频次、消费金额分别用占比趋势图进行处理,以消费频次为例,如下图:
大家通过图表,可以看出1w条数据中,关于消费频次出现了几个比较明显的断档,分别是:消费1次、消费2-5次、消费6-11次、消费12-17次、消费18次以上。所以,我把F值分为5档,F=1=消费1次,F=2=消费2-5次,F=3=消费6-11次,F=4=12-17次,F=5=18次以上。
同理,用上图的方式,我找出了R值和M值5当分别对应的数据区间。R=1=2天,R=2=3-8天,R=3=9-14天,R=4=15-22天,R=5=23天以上;M=1=600元,M=2=601-3800元,M=3=3801-6200元,M=4=6201-10000元,M=5=10001-15000元。
我们得到RFM三个数据指标下的分档标准:
(R值时反向值,R值越大,用户价值越低;F值时正向值,F越大用户价值越高;M值时正向值,M值越大用户价值越大。)
(3)计算1w条数据,每条数据下最近一次消费时间、消费频次、消费金额对应的R、F、M值:
上图的计算方式比较简单,我们在excel中写入if语句:
单元格E2=if(B2>23,5,if(B2>15,4,if(B2>9,3,if(B2>3,2)))))
解释:
- 如果B2大于23,则A1用户对应的R值=5,否则进入下一个if判断;
- 如果B2大于15,则A1用户对应的R值=4,否则进入下一个if判断;
- 如果B2大于9,则A1用户对应的R值=3,否则进入下一个if判断;
- 如果B2大于3,则A1用户对应的R值=2,否则进入下一个if盘点。
计算F值和M值的方式一样。
(4)计算R、F、M的平均值,这一点大家应该都会,直接求和再除以项数。R(ave)=2.9,F(ave)=1.8,M(ave)=2.7
(5)将1w条数据每个用户的R值、F值、M值和平均值进行比较,高于平均值则标记为高,低于平均值则标记为低:
比较高低值,使用一个简单的if语句:
H2=if(E2<2.9,“低”,“高”),F值和M值计算同理。
(6)将每个用户的R、F、M值与中值分别进行比较,得出用户所属类别表:每个用户的R值、F值、M值与中值进行比较,判断高或者低,进而确定用户属于上文所说RFM模型8类用户中的哪一类,这里需要用到一个简单的if语句进行判断,我们以A1用户为例,判断A1用户所属用户类别:
K2=IF(AND(H2=”高”,I2=”高”,J2=”高”),”重要价值用户”, IF(AND(H2=”高”,I2=”低”,J2=”高”),”重要发展用户”,IF(AND(H2=”低”,I2=”高”,J2=”高”),”重要保持用户”, IF(AND(H2=”低”,I2=”低”,J2=”高”),”重要挽留用户”,IF(AND(H2=”高”,I2=”高”,J2=”低”),”一般价值用户”, IF(AND(H2=”高”,I2=”低”,J2=”低”),”一般发展用户”,IF(AND(H2=”低”,I2=”高”,J2=”低”),”一般保持用户”,”一般挽留用户”)))))))
同时,我们点击excel中的“条件格式”,将文本中带有“高”字的设置一个绿色,带有“低”字的设置一个“红色”,更方便我们识别。
至此,我们得到了这1w条数据下用户的完整精细化分层,接下来,大家可以根据分层结果做相应的运营策略具体开展执行工作。
(7)根据用户分层结果制定运营策略
制定运营策略既要结合各类用户在产品中的占比,也要结合产品的实际业务逻辑。以此次某导购平台用户分层为例,制定如下策略:
有些小伙伴在制定策略时,直接甩上来一堆不能称之为策略的“方案”,比如针对“重要发展用户”,我给出的策略是“提升频次”,所有围绕提升频次的手段都可以去尝试,而不是上来就制定比如:发push、发券、打电话等方案,这些都是在策略支撑下的运营手段。策略本身一定是可以延伸和复制的。
除了上述根据用户类别进行运营策略制定,我们还可以分析1w条数据中,R值分布、F值分布、M值分布,基于三个数值的分布以及和中值的比较,针对最近一次消费时间、消费频次、消费金额维度下做整体的运营,提升站内用户整体活跃、整体流程、拉动GMV等。
整体来说,RFM模型不是很难,但是有一些需要注意的点:
- 在抓取原始数据时,一定要结合实际业务来选取关键数据指标进行分析,而不是千篇一律的最近一次消费时间、消费频次、消费金额。上文也给过豆瓣的案例,在豆瓣案例中,R=登录数、F=发帖数、M=互动数。
- 在定义R值、F值、M值的评估模型进行数据区间分隔时,也不是千篇一律的用本文说述的看整体趋势,从而发现明显断档的形式进行,也可以用散点图、透视表、占比图等进行判断。同时,除了通过数据去发现断档,我们可以基于自己的业务和业内的平均水平进行临界点的发现。比如针对滴滴、易道这样的打车软件,使用频次相对较高的肯定是工作日。所以,如果分析滴滴的业务,F值消费频次的5个分档可以基于实际业务,以每5天作为一档,分析近30天内的业务表现。比如F=1=5天以内,F=2=6-10天,F=3=11-15天,F=4=16-20天,F=5=21-30天。然后将提取的每个用户的消费频次和这5个档进行比较,确定每个用户的F值
- 对于中值的计算,最简单的是本文所说的平均值计算方式。除了平均值,还有二八法则,20%的用户创造了80%的收益,所以,可以将这个临界点作为每个用户R、F、M比较的对象。对于更加复杂的业务,可以寻求程序员协助,使用Means聚类算法进行精准取数。
- 除了本文所说选取3个核心业务指标进行交叉分析,有些时候,我们可能需要同时分析4个、5个指标,或者只需要分析2个指标。所以,不需要很死板的使用本文的计算方法,要灵活变通,这里不再举例。
- 最终还是要回归到运营上来,所以,针对不同分层用户的运营策略的制定要结合实际,在制定了运营策略之后,结合公司现有资源和手段开展具体的落地工作。
对于本文的内容,建议大家实操尝试。
#专栏作家#
Chris,微信公众号:产品运营(pm-2020),人人都是产品经理专栏作家,关注在线教育、社交、电商并参与多个项目从0-1的搭建。转型互联网金融,负责信用卡和现金贷产品的全流程运营工作。热爱将别人眼中“不值一提”的细节用文字呈现出来。
本文原创发布于人人都是产品经理 ,未经许可,禁止转载。
题图来自 Pixabay,基于 CC0 协议
你多篇文章的数据,表格,案例都一模一样,怎么连案例都撞上了?
我不清楚你这么着急开喷的目的,我其实也不必要回复,毕竟是一篇写了快2年的文章,而且现在网络上运营课程这么多,学习了课程的人,不管实际工作中有没有掌握模型的实操方法,都喜欢写一写,到处发一发。所以,如果你喜欢鉴别真假,可以像我上一条所说,去网络上搜索一下,我相信你半个月都喷不完。
另外,同学,我其实也想问你一个问题,比如hook模型,如果有一天你上了某个老师的课程,了解到这个模型后,再在其它任何网站上看到这个模型的文章,是不是都认为是抄袭老师的课程?先入为主的思想会对你自己发展不利。模型是公开可用的,如果是某个老师自己的一套方法,那我一定不会去写。
模型方法一样当然没有问题,你用的案例数据都是别人付费课程里的内容,一模一样,而且是远不止这一篇是多篇文章。我在开喷前当然有搜索过,我也不想误伤别人,但搜来搜去都是你这边在各个平台发的文章,还真就你一个人这么抄袭别人。难道按你的逻辑,网络上别人也抄我就不应该大惊小怪你就没有问题?
模型方法一样当然没有问题,你用的案例数据都是别人付费课程里的内容,一模一样,而且是远不止这一篇是多篇文章。我在开喷前当然有搜索过,我也不想误伤别人,但搜来搜去都是你这边在各个平台发的文章,还真就你一个人这么抄袭别人。难道按你的逻辑,网络上别人也抄我就不应该大惊小怪你就没有问题?。。
非原创要脸?你的很多篇文章都是张亮课程里的内容,不标明出处简直了,哪里原创了????
朋友,看你这么着急连续评论,我的邮箱不断收到通知,我回复你一下,帮你平复下情绪。
1、如果你是资深运营,应该了解RFM模型很早就有,非现在的运营从业者所创。
2、本文写于2018年
3、张亮老师,我有他微信,看过他的书,很钦佩。但我并未上过他的任何课程。
4、本文的图片,第一张,模型图片,所有说到这个模型的内容大都是这张图。第二张,我自己做的图,这个模型分8层,标准化内容,没什么可创新的。第三张到第八张,你说数据、案例一摸一样,请你找出来,我感谢你。剩下的图片,均是基于上述数据表格的可视化分析。
5、如果你只喜欢逛人人都是产品经理,那我建议你网络上搜索下“RFM模型用户分层”的文章,遍地都是。
如果B2大于9,则A1用户对应的R值=3,否则进入下一个if判断;
如果B2大于3,则A1用户对应的R值=2,否则进入下一个if盘点。
那么B2等于9,则A1用户是不是应该是2。我看表格标的是3. 🙄
作者R值的逻辑,前后有矛盾。重要价值用户的R值明明是越低越好,你自己在中间部分也强调了“(R值时反向值,R值越大,用户价值越低;)”到最后却又变成了RFM三高才是重要价值用户。很明显重要价值用户应该是R低F高M高
是的没错
我是**吗 ?我没看懂表格。。。
2的R值低于2.9,是因为R值是反向的么?
反向安排,R值越低越好,FM值越高越高
非常感谢,这篇文章详细理清楚了RFM关于用户价值分层的应用,不过文章中有个疑问:示例中只是将每个维度分成高低,直接对对应数值进行平均后比对即可,为何前面还需要多一分5个区间再取值的步骤?
个人理解是避免极大值或极小值的影响吧
E2的R值低于2.9阿,为什么还是高?
因为是反的
如果一个数刚好等于平均值怎么办?是高还是低呢?
缺少等于
既然把R、F、M每个方向定义为:高、低,两个方向,我们找出R、F、M原始数据的中值不就可以划分出高低了吗?为什么还要先划分5个区间以后再找出中值划分高低?
是为了用户分层,尽可能的分层。只划分高低没有意义
很实用的文章,想问一下占比趋势图是用什么方式生成的
一篇从理论到实践良心文章啊,看完以后恍然大悟,终于可以实操一次了
非常受益!现在就着手分析客户数据。
想请教下那个用户占比趋势图的Y轴数据是什么?怎么出来的百分比?谢谢
十分感谢分享~~~~~期待更多您的文章
很清晰,感谢~
老师你好,请教一个问题,目前在函数这里卡起了,由于我的R值只有3个等级,函数我是这样设置的H8=if(E8>17,3,if(E8>6,2,if(E8>2,1))))),无法计算出结果,请问函数是写对了吗?
你这个函数其实是分了四个等级,最后一个其实还隐含了≤2的情况
能说下如何写吗?又试了很多次还是不行,对函数实在不太懂 😥
看懂了,只是对表格函数太弱了,不过对用户分层运营终于理解了,为了加深印象,决定着手写一篇,并找机会在工作中实践。
思路都是相近的,感觉这里面的数据有问题,怀疑原创性。
弱弱地问一句,H2(R值)=if(E2<2.9,“低“,”高”),R的高低值算反了吗? 🙄 还是说要把R的分档标准的顺序反一下?
反了,这个应该是 大于
真的是干货,很干很有料!拜服!期待作者有更多这样的高能产出!
请问怎么对在线教育K12用户的核心指标进行定义呢
请问您文章中举例提到的最近一次消费时间,表格里的数字都是整数,这个是怎么取数的 不应该是具体时间么
截取1万个用户的行为时间周期,取数是该用户消费最后一次距离你统计这一刻的距离天数的数值
rfm现在更多算是一种思维模式,做方法论有很多局限性,毕竟这个简易模型起源于传统行业
你好,文章很受益,有个小细节请教。 滴滴那个例子,平时和周末有明显的频次区别,那周期间隔为什么不是7天,而是5天?
抱歉,这个小细节有问题 🙂 你理解的是对的。
间隔是7天的话,应该怎么划分?
举得例子非常实用,终于知道RFM模型怎么使用了,感谢
不客气,加油~
请问下不适用的情况有哪些?
这个问题太大了,有很多不适用的情况,只能说灵活变通了,比如针对只有两个维度的业务,就可以在现有的RFM模型上已经变形,进行两个维度下的分析。
H2函数公式写错了吧
哪里,可以指出哈
怎么对视频网站会员的核心指标进行定义呢
这个要根据你们的实际情况做分析,一般情况下,视频网站可以考虑最近观看的时间、观看市场、互动情况(收藏、分享、评论)、付费情况等。
是否可以将付费和非付费用户进行区分,用两张表格呈现,针对付费和非付费中不同等级的用户,制定不同的策略。
Rfm 模型建立的用户分层机制确实是一个基础,但还是有一些运营指标变动而无法解释的情况,感觉还是去玩继续细分画像纬度找到差异点
“去玩继续细分画像维度”这个不太明白。文章说了,RFM模型是用户价值模型的一种方式,还有生命周期、金字塔、AARRR、用户个性化特征/需求模型等,这些不是生搬硬套,文章也说了,模型不生效,就考虑交叉维度分析,灵活变通即可。
你这篇是抄袭的致远的《如何成为运营大牛》系列,真无耻
我不知道你是否了解RFM的起源,如果了解的话,你会发现,目前互联网上散布的所有RFM相关的文章、教学视频都是在起源基础上换着法的表达。RFM的三个字母的意思、四维立体象限、八分方向的用户分层,这些都是前人定下的,我是没法去改变的,你去搜索RFM的图片,能看到的就是这样的,你看其他人的文章的图片也是这样的,每个人都一样。我们没必要在一些基础的内容上浪费太多时间,就像做语音识别的公司会直接接入科大讯飞的API一样。但大部分文章表达的是什么?是介绍RFM为何物,不知道实际中怎样操作,不知道RFM模型的使用操作流程。致远的文章我看过,其它很多人的文章我都看过,所以才会有开头那句:“在用户运营领域,有一个叫做RFM的词,相信很多人看到过,或许感觉比较专业就没有继续深入;或者有些文章涉及到了python等数据处理手段,望而却步;又或者因为这个词跟电商关系紧密,所以非电商的运营伙伴就选择了放弃学习。”
我写的这篇文章核心的是什么?是我对大家在使用RFM过程中要注意点的总结;是我举例告诉大家RFM不仅可以适用于电商,其它业务模式中也可使用;是我告诉了大家RFM模型正确的使用流程。关于你说我抄袭,我能看出来的就是在Excel中的那些计算公式,我想请问,你平时每天在用的求和、平均值,是不是都算抄袭了?我原本就是为了避嫌,不想把公式写出来的,因为公式是使用RFM中最不重要的部分,最重要的是思想,是怎样选取源数据、怎样确定评估模型和中值。没想到还是被人诟病。
RFM模型你去网上搜一下,能看到的就是四维立体象限图、看到的就是八个方向的用户分层,这个不是我们现在写文章的谁发明的,我也没必要为了避开什么,非要表格做的不一样,表头换个颜色,没必要。
人人都是产品经理网站审核通过,就表示了这一点,我自觉没问题,祝你进步。
有没有专门讲用户各种模型的书籍?求推荐,现在对用户还无法形成系统的架构
不用在意,网络喷子太多;本文重在结合具体案例的实践
支持你,你写的很好,表达自己的观点,分享自己的经验,不必在意每个人的不同的眼光!问心无愧即好。
你多篇文章的数据,表格,案例都一模一样,怎么连案例都撞上了?
这篇的RFM和致远的不算抄袭,另外,要尊重作者。