产品经理需要了解的算法——热度算法和个性化推荐

88 评论 132480 浏览 1761 收藏 28 分钟

本文作者以新闻产品为例,并结合自己之前产品从零积累用户的经验,从而整理了作为PM需要了解的基本算法知识和实操。enjoy~

今日头条的走红带动了“个性化推荐”的概念,自此之后,内容型的产品,个性化算法就逐渐从卖点变为标配。伴随着“机器学习”,“大数据”之类的热词和概念,产品的档次瞬间提高了很多。而各种推荐算法绝不仅仅是研发自己的任务,作为产品经理,必须深入到算法内部,参与算法的设计,以及结合内容对算法不断“调教”,才能让产品的推荐算法不断完善,最终与自己的内容双剑合璧。

本文以新闻产品为例,结合了我之前产品从零积累用户的经验,整理了作为PM需要了解的基本算法知识和实操。

1. 算法的发展阶段

个性化推荐不是产品首次发布时就能带的,无论是基于用户行为的个性化,还是基于内容相似度的个性化,都建立在大量的用户数和内容的基础上。产品发布之初,一般两边的数据都有残缺,因此个性化推荐也无法开展。

所以在产品发展的初期,推荐内容一般采用更加聚合的“热度算法”,顾名思义就是把热点的内容优先推荐给用户。虽然无法做到基于兴趣和习惯为每一个用户做到精准化的推荐,但能覆盖到大部分的内容需求,而且启动成本比个性化推荐算法低太多。

因此内容型产品,推荐在发布初期用热度算法实现冷启动,积累了一定量级以后,才能逐渐开展个性化推荐算法。

2. 热度算法

2.1 热度算法基本原理

需要了解的是,热度算法也是需要不断优化去完善的,基本原理:

新闻热度分 = 初始热度分 + 用户交互产生的热度分 – 随时间衰减的热度分

Score = S0 + S(Users) – S(Time)

新闻入库后,系统为之赋予一个初始热度值,该新闻就进入了推荐列表进行排序;随着新闻不断被用户点击阅读,收藏,分享等,这些用户行为被视作帮助新闻提升热度,系统需要为每一种新闻赋予热度值;同时,新闻是有较强时效性的内容,因此新闻发布之后,热度必须随着新闻变得陈旧而衰减。

新闻的热度就在这些算法的综合作用下不断变化,推荐列表的排序也就不断变化。

2.2 初始热度不应该一致

上面的算法为每一条入库的新闻赋予了同样的热度值,但在现实使用后发现行不通,例如娱乐类别比文化类别受欢迎程度本身就高很多;或者突发了严重的灾害或事故;或是奥运会期间,体育类别的关注度突然高了起来;而此时如果还是每条新闻给同样的热度就不能贴合实际了。

解决办法就是把初始热度设置为变量:

(1)按照新闻类别给予新闻不同的初始热度,让用户关注度高的类别获得更高的初始热度分,从而获得更多的曝光,例如:

(2)对于重大事件的报道,如何让它入库时就有更高的热度,我们采用的是热词匹配的方式。

即对大型新闻站点的头条,Twitter热点,竞品的头条做监控和扒取,并将这批新闻的关键词维护到热词库并保持更新;每条新闻入库的时候,让新闻的关键词去匹配热词库,匹配度越高,就有越高的初始热度分。

这样处理后,重大事件发生时,Twitter和门户网站的争相报道会导致热词集中化,所有匹配到这些热词的新闻,即报道同样事件的新闻,会获得很高的初始热度分。

2.3 用户行为分规则不是固定不变的

解决了新闻入库的初始分之后,接下来是新闻热度分的变化。先要明确用户的的哪些行为会提高新闻的热度值,然后对这些行为赋予一定的得分规则。例如对于单条新闻,用户可以点击阅读(click),收藏(favor),分享(share),评论(comment)这四种行为,我们为不同的行为赋予分数,就能得到新闻的实时用户行为分为:

S(Users) = 1*click + 5*favor + 10*comment + 20*share

这里对不同行为赋予的分数为1,5,10,20,但这个值不能是一成不变的;当用户规模小的时候,各项事件都小,此时需要提高每个事件的行为分来提升用户行为的影响力;当用户规模变大时,行为分也应该慢慢降低,因此做内容运营时,应该对行为分不断调整。

当然也有偷懒的办法,那就是把用户规模考虑进去,算固定用户数的行为分,即:

S(Users) = (1*click + 5*favor + 10*comment + 20*share)/DAU * N(固定数)

这样就保证了在不同用户规模下,用户行为产生的行为分基本稳定。

2.4 热度随时间的衰减不是线性的

由于新闻的强时效性,已经发布的新闻的热度值必须随着时间流逝而衰减,并且趋势应该是衰减越来越快,直至趋近于零热度。换句话说,如果一条新闻要一直处于很靠前的位置,随着时间的推移它必须要有越来越多的用户来维持。

我们要求推荐给用户的新闻必须是24h以内,所以理论上讲,衰减算法必须保证在24h后新闻的热度一定会衰减到很低,如果是线性衰减,当某些新闻突然有大量用户阅读,获得很高的热度分时,可能会持续排名靠前很久,让用户觉得内容更新过慢。

参考牛顿冷却定律,时间衰减因子应该是一个类似于指数函数:

T(Time) = e ^ (k*(T1 – T0)) 

其中T0是新闻发布时间,T1是当前时间。

而由于热度的发展最终是一个无限趋近于零热度的结果,最终的新闻的热度算法也调整为:

Score = ( S0(Type) + S(Users) ) / T(Time)

2.5 其他影响因素

很多新闻产品会给用户“赞”,“踩”或“不在推荐此类”的选项,这些功能不仅适用于个性化推荐,对热度算法也有一定的作用。

新闻的推送会造成大量的打开,在计算热度的时候需要排除掉相关的影响。类似于这样的因素,都会对热度算法产生影响,因此热度算法上线后,依然需要不断地“调教”。建议把所有的调整指标做成可配项,例如初始热度分,行为事件分,衰减因子等,从而让产品和运营能实时调整和验证效果,达到最佳状态。

3. 基于内容的推荐算法

现在,你的内容产品顺利度过了早期阶段,拥有了几万甚至十几万级别的日活。这时候,你发现热度算法导致用户的阅读内容过于集中,而个性化和长尾化的内容却鲜有人看,看来是时候开展个性化推荐,让用户不仅能读到大家都喜欢的内容,也能读到只有自己感兴趣的内容。

个性化推荐一般有两种通用的解决方案,一是基于内容的相关推荐,二是基于用户的协同过滤。由于基于用户的协同过滤对用户规模有较高要求,因此更多使用基于内容的相关推荐来切入。

这里引入一个概念叫“新闻特征向量”来标识新闻的属性,以及用来对比新闻之间的相似度。我们把新闻看作是所有关键词(标签)的合集,理论上,如果两个新闻的关键词越类似,那两个新闻是相关内容的可能性更高。 新闻特征向量是由新闻包含的所有关键词决定的。得到新闻特征向量的第一步,是要对新闻内容进行到关键词级别的拆分。

3.1 分词

分词需要有两个库,即正常的词库和停用词库。正常词库类似于一本词典,是把内容拆解为词语的标准;停用词库则是在分词过程中需要首先弃掉的内容。

停用词主要是没有实际含义的,例如“The”,“That”,“are”之类的助词;表达两个词直接关系的,例如“behind”,“under”之类的介词,以及很多常用的高频但没有偏向性的动词,例如“think”“give”之类。显而易见,这些词语对于分词没有任何作用,因此在分词前,先把这些内容剔除。

剩下对的内容则使用标准词库进行拆词,拆词方法包含正向匹配拆分,逆向匹配拆分,最少切分等常用算法,这里不做展开。

因为网络世界热词频出, 标准词库和停用词库也需要不断更新和维护,例如“蓝瘦香菇”,“套路满满”之类的词语,可能对最终的效果会产生影响,如果不及时更新到词库里,算法就会“一脸懵逼”了。

因此,推荐在网上查找或购买那些能随时更新的词库,各种语种都有。

3.2 关键词指标

前面已经说过,新闻特征向量是该新闻的关键词合集,那关键词的重合度就是非常重要的衡量指标了。

那么问题来了,如果两条新闻的关键词重合度达到80%,是否说明两条新闻有80%的相关性呢?

其实不是,举个例子:

(1)一条“广州摩拜单车投放量激增”的新闻,主要讲摩拜单车的投放情况,这篇新闻里“摩拜单车”是一个非常高频的词汇,新闻在结尾有一句“最近广州天气不错,大家可以骑单车出去散心”。因此“广州天气”这个关键词也被收录进了特征向量。

(2)另外一条新闻“广州回南天即将结束,天气持续好转”,这篇新闻结尾有一句“天气好转,大家可以骑个摩拜单车出门溜溜啦”,新闻里面“广州天气”是非常高频的词汇,“摩拜单车”尽管被收录,但只出现了一次。

这两个新闻的关键词虽然类似,讲的却是完全不同的内容,相关性很弱。如果只是看关键词重合度,出现错误判断的可能性就很高;所以特征向量还需要有第二个关键词的指标,叫新闻内频率,称之为TF(Term Frequency),衡量每个关键词在新闻里面是否高频。

那么问题来了,如果两条新闻的关键词重合度高,新闻中关键词的频率也相差无几,是否说明相关性很强呢?

理论上是的,但又存在另外一种情况:如果我们新闻库里所有的新闻都是讲广州的,广州天气,广州交通,广州经济,广州体育等,他们都是讲广州相关的情况,关键词都包含广州,天河,越秀,海珠(广州各区)等,并且有着类似的频率,因此算法很容易将它们判断为强相关新闻;从地域角度讲,这种相关性确实很强,但从内容类别层面,其实没有太多相关性,如果我是一个体育迷,你给我推荐天气,交通之类的内容,就没多大意义了。

因此引入第三个关键词的指标,即关键词在在所有文档中出现的频率的相反值,称之为IDF(Inverse Document Frequency)。为什么会是相反值?因为一个关键词在某条新闻出现的频率最大,在所有文档中出现的频率越小,该关键词对这条新闻的特征标识作用越大。

这样每个关键词对新闻的作用就能被衡量出来即TFIDF=TF * IDF,这也就是著名的TF-IDF模型。

3.3 相关性算法

做完分词和关键词指标后,每一篇新闻的特征就能用关键词的集合来标识了:

其中word0,1,2……n是新闻的所有关键词,tfidf0,1,2……n则是每个关键词的tfidf值。

两个新闻的相似度就能通过重合的关键词的tfidf值来衡量了。根据之前所学的知识,几何中夹角余弦可以用来衡量两个向量的方向的差异性,因此在我们的算法中使用夹角余弦来计算新闻关键词的相似度。夹角越小,相似度越高。

有了关键词和各关键词的tfidf之后,就可以计算新闻的相似度了。假设两条新闻的特征列表如下:

可以看到两条新闻有5个重合的关键词:广州,摩拜单车,太阳,天河和市长,因此两条新闻的相关性由这5个关键词决定,计算方式如下:

得出两条新闻的相关性最终值;用同样的方法能得出一条新闻与新闻库里面所有内容的相关性。

3.4 用户特征

得到新闻特征以后,还需要得到用户特征才能对两者进行匹配和推荐,那怎么获得用户特征呢?

需要通过用户的行为来获得,用户通过阅读,点赞,评论,分享来表达自己对新闻内容的喜爱;跟热度排名类似,我们对用户的各种行为赋予一定的“喜爱分”,例如阅读1分,点赞2分,评论5分等,这样新闻特征跟用户行为结合后,就能得到用户的特征分。

而随着用户阅读的新闻数越来越多,该用户的标签也越来越多,并且越发精准。

从而当我们拿到新闻的特征后,就能与用户的关键词列表做匹配,得出新闻与用户阅读特征的匹配度,做出个性化推荐。

3.5 其他运用

除了个性化推荐,基于内容的相关性算法能精准地给出一篇新闻的相关推荐列表,对相关阅读的实现非常有意义。此外,标签系统对新闻分类的实现和提升准确性,也有重要的意义。

3.6 优缺点

基于内容的推荐算法有几个明显优点:

  1. 对用户数量没有要求,无论日活几千或是几百万,均可以采用;因此个性化推荐早期一般采用这种方式;
  2. 每个用户的特征都是由自己的行为来决定的,是独立存在的,不会有互相干扰,因此恶意刷阅读等新闻不会影响到推荐算法。

而最主要的缺点就是确定性太强了,所有推荐的内容都是由用户的阅读历史决定,所以没办法挖掘用户的潜在兴趣;也就是由于这一点,基于内容的推荐一般与其他推荐算法同时存在。

4. 基于用户的协同推荐

终于,经过团队的努力,你的产品已经有了大量活跃用户了,这时候你开始不满足于现有的算法。虽然基于内容的推荐已经很精准了,但总是少了那么一点性感。因为你所有给用户的内容都是基于他们的阅读习惯推荐的,没能给用户“不期而遇”的感觉。

于是,你就开始做基于用户的协同过滤了。

基于用户的协同过滤推荐算法,简单来讲就是依据用户A的阅读喜好,为A找到与他兴趣最接近的群体,所谓“人以群分”,然后把这个群体里其他人喜欢的,但是A没有阅读过的内容推荐给A;举例我是一个足球迷,系统找到与我类似的用户都是足球的重度阅读者,但与此同时,这些“足球群体”中有一部分人有看NBA新闻的习惯,系统就可能会给我推荐NBA内容,很可能我也对NBA也感兴趣,这样我在后台的兴趣图谱就更完善了。

4.1 用户群体划分

做基于用户的协同过滤,首先就要做用户的划分,可以从三方面着手:

(1)外部数据的借用

这里使用社交平台数据的居多,现在产品的登录体系一般都借用第三方社媒的登录体系,如国外的Facebook、Twitter,国内的微信、微博,借用第三方账户的好处多多,例如降低门槛,方便传播等,还能对个性化推荐起到重要作用。因为第三方账户都是授权获取部分用户信息的,往往包括性别,年龄,工作甚至社交关系等,这些信息对用户群划分很有意义。

此外还有其他的一些数据也能借用,例如IP地址,手机语种等。

使用这些数据,你很容易就能得到一个用户是北京的还是上海的,是大学生还是创业者,并依据这些属性做准确的大类划分。比如一篇行业投资分析出来后,“上海创业圈”这个群体80%的用户都看过,那就可以推荐给剩下的20%。

(2)产品内主动询问

常见在产品首次启动的时候,弹框询问用户是男是女,职业等,这样能对内容推荐的冷启动提供一些帮助。但总体来说,性价比偏低,只能询问两三个问题并对用户的推荐内容做非常粗略的划分,同时要避免打扰到用户;这种做法算是基于用户个性化的雏形。

(3)对比用户特征

前文已经提到过,新闻的特征加用户的阅读数据能得到用户的特征,那就可以通过用户特征的相似性来划分群体。

4.2 内容推荐实施

我们结合一个很小的实例来了解用户协同过滤的原理,包括如何计算用户之间的相似性和如何做出推荐。假设有A、B、C、D和E共5个用户,他们各自阅读了几篇新闻并做出了阅读,赞,收藏,评论,分享操作,我们对这几种行为赋予的分数分别为1分、2分、3分、4分和5分,这样用户对每条新闻都有自己的得分,其中“-”表示未阅读,得分如下:

接下来,我们需要给用户E推荐4,5,6中的哪一篇?

用户的阅读特征向量由用户所有的阅读数据决定,我们以用户E阅读过的新闻数据作为参考标准,来找到与E最相似的用户。

多维向量的距离需要通过欧几里得距离公式来计算,数值越小,向量距离约接近。

算出结果:

  • distance(E,A)=4.123 (用户A没有阅读news2,因此news2的数据不能用来计算与用户E的相似度,这里取1,3)
  • distance(E,B)=3.162
  • distance(E,C)=3.742
  • distance(E,D)=1.414

因此得出结果:用户D是与用户E阅读喜好最接近的那个,应该优先归为同一类用户。最终结论根据用户D的阅读数据,优先推荐news4。

4.3 内容选取

我们通过阅读特征向量把用户做群体划分后,接下来就是如何获取新闻推荐的优先级。上面的例子里面只需要选出一个相似用户,并且用户A,B,C,D都只阅读news4,5,6中的一条,所以比较简单,但现实情况中,同一个用户群体阅读的新闻多且随机,用户交互更是错综复杂,如何得出推荐新闻的优先级呢?

假设用户X在系统归属于群体A,这个群体有n个用户,分别为A0,A1,A2……An,这些用户的集合用S(X,n)表示。

  1. 首先,我们需要把集合中所有用户交互过(阅读,评论等)的新闻提取出来;
  2. 需要剔除掉用户X已经看过的新闻,这些就不用再推荐了,剩下的新闻集合有m条,用N(X,m)来表示;
  3. 对余下的新闻进行评分和相似度加权的计算,计算包括两部分,一是用户X与S(X,n) 每一个用户的相似性,二是每个用户对新闻集N(X,m)中每条新闻的喜好,这样就能得到每条新闻相对于用户X的最终得分;
  4. 将N(X,m)中的新闻列表按照得分高低的顺序推荐给用户。

4.4 优缺点

相比于基于内容的推荐算法,基于用户的协同过滤同样优缺点明显。

优点主要在于对分词等算法的精确度无太大要求,推荐都是基于用户的行为数据去不断学习和完善;同时能发现用户的潜在阅读兴趣,能“制造惊喜”。

而缺点则是启动的门槛高,用户量不够时几乎无法开展;并且学习量不够时推荐结果较差。

5. 总结

关于个性化推荐的算法,在网上有很多资料,也有很多其他的实现方法,因为笔者了解也有限,所以也不敢描述。如有兴趣可以自行搜索。热度和个性化推荐算法,作为大部分内容型产品的核心卖点之一,依然在不断地进化和完善中。没有哪种算法是完美的,甚至没有哪种算法是一定优于其他的,在实际使用中,很多产品都是多算法结合去做好内容推荐。

而产品经理在算法的实施中,绝对不是一句“我们要做个性化推荐”就完事的,必须深入算法内部,对算法的原理做深入了解,然后结合自己的产品特征来部署和优化。

因此我站在产品经理的角度,整理了这一篇初步的算法相关的介绍,如有对文中内容感兴趣的,欢迎探讨!如有描述不当之初,敬请指正,感激不尽!

最后,需要对我的团队表示感谢,飞哥在算法的研究中打了头阵并给出了细致的分享,宗荣对算法进行了无数轮的调整和优化,凯华在关键词的部署和效果验证中付出了很多心血……喜欢那些日子里大家一起从零开始学习和实现算法,让推荐效果越来越好。

 

作者:卢争超,前UC,腾讯海外产品经理,负责UC Browser,微信支付等产品的国际化,现创业中。多年产品策划运营和管理经验,在工具,支付,内容,企业服务型产品的策划和运营领域经验丰富。

本文由 @卢争超 原创发布于人人都是产品经理。未经许可,禁止转载。

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. 第一篇文章,10W+, 大厂思维真是恐怖如斯。

    来自广东 回复
  2. 有做内容产品的吗 可以一起交流下吗

    来自北京 回复
  3. 这是一条硬科普

    来自江苏 回复
  4. 写的还是蛮好

    来自江苏 回复
  5. 产品小白也看懂了,深入浅出,超级赞

    来自北京 回复
  6. 太赞了

    来自广东 回复
  7. 学习了

    来自上海 回复
  8. 基于数据的算

    来自山西 回复
  9. 干货满满,学习了,谢谢分享!

    来自北京 回复
  10. 目前算法团队已经将文中的框架基本实现,面对的问题主要是:1.如何判断每一篇文章的时效?(因为文章特征千差万别,为了资源有效利用不能统一按固定时间处理,导致不少线上case);2.除了点击外,用户点赞/分享/评论的行为过于稀疏,尤其是非垂直领域内容平台,用户往往表现的并非真实兴趣,导致一些兴趣探索不能得到很好的效果,有什么好的解决办法呢?谢谢!
    另外希望作者有时间多多更新呀~

    来自北京 回复
  11. 产品经理写到prd里的个性化推荐要怎么写

    回复
  12. 想问下k值是多少呀

    来自中国 回复
    1. 同问

      来自陕西 回复
    2. k值应该指的是冷却系数。如果假定一篇新文章的初始分数是100分,24小时之后”冷却”为1分,那么可以计算得到”冷却系数”约等于0.192 如果你想放慢”热文排名”的更新率,”冷却系数”就取一个较小的值,否则就取一个较大的值(节选自 https://blog.csdn.net/zhuhengv/article/details/50476306)

      来自上海 回复
  13. 写得很好,请问下有没有相关得书籍推荐

    来自广东 回复
    1. 同求。

      来自广东 回复