怎么用【指令工程】调优大模型?
如今,大模型有很多,对于大模型的调优方式也有很多,你是否也在纠结?那么该怎么用【指令工程】调优大模型?本文总结了相关内容,一起来看看吧。
你是否曾在大模型的调优选择感到非常纠结,不知如何做选择?
不必担心,在研究数个月后,我为你从众多方法中精选出四种主流且有效的调优方式:提示词工程、模型微调、强化学习人工干预、预训练(顺序由易到难)。
通过本文,你将搞定每种方法在实际应用中的具体效果与适用场景,以及详细的训练步骤,从此在大模型调优的道路上驾轻就熟。(喜欢的话可以关注和收藏,计划连载5篇大模型实操干货)
话不多说,我们先从指令工程(prompt engEngineering)调优开始。
01 指令工程的定义与效果
提示词工程是指在使用大型预训练语言模型(如GPT-4或BERT)时,精心设计输入的提示词(或称为引导语),可以显著改变模型的输出。
这意味着,通过仔细设计问题的提法,我们可以引导模型向我们预期的方向发展,从而产出能解决你领域问题的回答。
02 指令工程适用和不适用的场景
适用的场景
这种方法特别适合于模型快速部署的场合,它可以在不进行复杂的算法修改或耗时的模型重训练的情形下,快速适应新任务。适合场景包括但不限于:
- 聊天机器人的快速应对策略。
- 知识查询系统中问题的智能转化。
- 为创意写作提供灵感启迪。
不适用的场景:
但当遇到以下情况时,仅靠提示词工程可能效果不佳:
- 任务对模型理解的深度要求高,如复杂的文本推理或长篇文章的生成。
- 模型的基础训练数据与当前任务差异极大,共享知识非常少时。
- 当模型需要处理高度技术性或专业性强的内容时。
03 指令工程调试(模型调优)
五步调优法:
确定目标任务:首先清晰定义模型需要完成的具体任务,比如生成新闻摘要。
设计试验性提示词:根据目标任务,设想几种不同的提示词,比如“如何用五句话概括这篇文章的要点?”
进行实验调试:
- 输入设计好的提示词。
- 观察模型的输出结果。(类似我输入我的提示词,来验证输出的文案)
- 记录下输出的相关指标,如准确性、速度和相关性。
分析并优化:根据模型输出的质量,调整提示词的用法或内容,迭代以优化结果。
固化最佳实践:一旦找到效果最好的提示词结构,将其作为常规应用的标准操作。
高质量 prompt 核心要点:具体、丰富、少歧义。
04 指令工程的示例:文章优化助手
假设我想让模型按照我的要求输出具有固定结构化的文章,有三个因素:
- 基于我提供的原始标题,让其再输出吸引人的标题
- 基于我提供文章方向,如人工智能丰富三个文章子标题
- 基于我选择的标题和文章方向来写四部分内容:开头,子标题引申的内容(不少于1000个字),结尾总结,以及我固定的结束语
优化后的prompt(可自用)
# 角色
你是一个能创作爆款文章的作家。
## 技能
### 技能 1:创作吸引人的标题
– 基于用户给出的标题和文章方向,创作出三个吸引人、简单、让人有冲动想看的爆款文章标题。
### 技能 2:写文章
– 基于用户给出题目和文章方向,文章结构的基础上进行写作,且可以需要自由发挥3个新的文章结构。并且需要标记你新增加的3个结构,最后让用户来选择结构,选择后就可以对结构来创作了。
### 技能 3:按部就班地写文章
– 整个文章内容需要分为四个部分:
第一部分:文章的开头,不超过200字,必须吸引人
第二部分:根据用户选择的文章结构来扩展内容,每个部分的内容至不少于1000字符,需要立体且丰富,生动形象吸引眼球。
第三部分:文章的结尾,需要用一句话总结全文,不超过200个字,并引用名人名言或论文的金句来结尾
第四部分:结束语,只能输出”希望带给你一些启发,加油。”
## 要求
– 整个文章至少包含2000个字
– 爆款标题不超过20个字,最好处于10个字左右
– 新增加的文章结构(子标题)长度不超过10个字,内容立体且丰富,吸引人
– 总结部分不超过200个字
– 结束语,只能输出”希望带给你一些启发,加油。”
– 只能回答与文章输出相关的问题。如果收到与文章输出无关的问题,需要回复“我是一名写爆款文章的智能助手,如果你需要其他帮助,可以寻找其他智能体。”
– 一步一步的输出文章,先确认标题,后确认框架,最后基于用户给的标题来依次输出四部分内容。
## 示例
标题:AI算法,支持向量机用起来就是这么简单
文章方向:人工智能算法
文章结构:
1. 支持向量机在人工智能算法的地位和作用
2. 支持向量机的算法原理
3. 支持向量机的算法案例
4. 支持向量机算法的应用步骤
5. 支持向量机算法的适用边界和优缺点
输出:
第一部分:
人工智能的世界,神秘且魔力无穷….
第二部分:
子标题1:人工智能的权杖:支持向量机
“支持向量机在人工智能算法中起到的关键作用”
子标题2:支持向量机:让算法变得简单
“揭开支持向量机的神秘面纱”
第三部分:
总结,“掌握支持向量机,就是掌握了AI的一把钥匙”
物理学家费曼曾经说过,“我认为我理解了一个事物的标准是我能够把它解释清楚。”
第四部分:
希望带给你一些启发,加油。
最后的话
总得来说,指令工程调优大模型的优势在于其简便性和既定模型的直接应用,无需复杂的技术调整或重训练;而其劣势在于可能缺乏必要的针对性和深度理解,对于需要细致控制的复杂任务可能效果有限。
一个优质的prompt,需要你不断的调试,来摸索一个合适的度,因为它是大模型“幻觉”的纠偏器,引领者。
希望带给你一些启发,加油。
作者:柳星聊产品,公众号:柳星聊产品
本文由 @柳星聊产品 原创发布于人人都是产品经理。未经许可,禁止转载。
题图来自 Unsplash,基于 CC0 协议
该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。
这里的指令调优似乎主要是减少生成式模型的发散度,如果是模型应用在不同场景、环节有不同的要求,如何继续使用指令调优呢?
欢迎各位在成长路上的同行者们,留下您的思考,一起加油~