从入门到求职,成为数据科学家的终极指南
本文作者通过分享自己的经验,来帮助大家了解从事数据科学这个职业,一起来看看~
你想成为一名数据科学家?
很棒,说明你是很有上进心的人,而且对数据科学充满热情,并希望通过解决复杂的问题为公司带来价值。但是你在数据科学方面毫无经验,也不知道如何开始。我很懂你,因为曾经我也是如此。本文就是特别针对热情且有抱负的数据科学家,解答进入该领域最常见的问题和挑战。
我希望通过分享我自己的经验,帮助你了解入科从事数据科学的职业,并为你提供一些指南,让你的学习之旅更加愉快。让我们开始吧!
数据科学人才缺口
根据国际数据公司(IDC)预测,2020年全球大数据和业务分析收入将超过2100亿美元。
根据LinkedIn 与2018年8月发布的美国劳动力报告, 2015年美国的数据科学人才过剩。三年后,随着越来越多公司面临数据科学技能人才的短缺,这一趋势发生了巨大变化。越来越多的公司开始使用大数据得出分析见解和制定决策。
从经济角度讲,这完全取决于供需关系。
好消息是:形势以及发生了转变。坏消息是:随着数据科学领域的就业机会不断增加,但很多有抱负的数据科学家由于技能不符合市场的需求,而难以找到心仪的工作。
在接下来的部分中,你将看到该如何提高数据科学技能,从而在大量求职者中脱颖而出,最终收获梦想的工作。
终极指南
1. 需要哪些技能以及如何掌握?
说实话,要掌握数据科学领域所有技能几乎是不可能的,因为范围太广了。总有一些技术是数据科学家没有掌握的,因为不同的业务需要不同的技能。但有一些核心技能是数据科学家所必须掌握的。
技术能力,数学和统计学,编程和商业知识。尽管无论使用何种语言,编程能力都是必备的。作为数据科学家,我们应该运用商业沟通能力想企业高层说明模型结果,同时基于数学和统计学的支持。
(1)数学和统计学
关于数学和统计学,可以查看Randy Lao的相关文章,当中的资源非常丰富。
https://medium.com/@randylaosat
当我刚开始学习数据科学时,我读了这本书 An Introduction to Statistical Learning — with Applications in R(统计学习导论 – 与R中的应用)。我强烈推荐这本书给初学者,因为本书侧重于统计建模和机器学习的基本概念,并提供详细而直观的解释。如果你特别喜欢数学,也许你更喜欢这本书:The Elements of Statistical Learning(统计学习中的元素)。
(2)编程
关于学习编程,特别是对于没有经验的初学者,我建议专注于学习一种语言,我个人更喜欢Python,因为Python更容易学习。关于Python或R哪种语言更好一直都存在争论,我个人认为重点应放在如何帮助企业解决问题,而不是使用哪种语言。
(3)商业知识
最后,我要强调的是对商业知识的理解也是至关重要的。
(4)软技能
事实上,软技能比硬技能更重要。在LinkedIn询问了2000名商业领袖,我们发现2018年他们最希望员工具备的软技能包括:领导力、沟通能力、合作能力和时间管理能力。我认为这些软技能在数据科学家的日常工作中起着至关重要的作用。
2. 如何选择合适的训练营和在线课程?
随着人工智能和数据科学的兴起,大量课程课程、训练营如雨后春笋般涌现,都不希望错失良机。
因此问题来了,该如何选择适合你的学习资源呢?
我的选择方法如下:
没有一门课程能涵盖你需要的所有资源。有些课程在某些方面是重叠的,因此不值得花钱购买不同但有重复性的课程。
首先要知道你需要学什么。不要因为花哨和吸引人的标题就盲目选择课程。通过查看求职网站上数据科学家的职位描述,你会发现一些公司需要的通用技能。然后通过了解自己缺乏的技能去搜索相应课程。
比较不同平台提供的优质课程。类比几个课程,并且查看其他人的评论(非常重要!)。另一方面,Coursera、Udemy、Lynda、Codecademy、DataCamp、Dataquest等平台也提供许多免费课程。
以下是我个人特别喜欢的一些课程:
- Machine Learning ,主讲人: Coursera的联合创始人吴恩达
- Python for Data Science and Machine Learning Bootcamp,主讲人 :Jose Portilla
- Deep Learning A-Z™: Hands-On Artificial Neural Networks,主讲人: Kirill Eremenko,Hadelin de Ponteves
- Python for Data Science Essential Training ,主讲人:Lillian Pierson
- The Ultimate Hands-On Hadoop — Tame your Big Data,主讲人:Frank Kane
3. 能否通过开源学习成为数据科学家?
我想说的是,通过开源学习足以让你开始从事数据科学,之后可以根据业务需求进一步发展自己的职业生涯。
4.对于零基础的初学者有什么推荐的书籍吗?
没有固定的学习途径,条条大路通罗马。阅读相关书籍是掌握基础知识的良好。注意不要试图去记忆具体的数学和算法细节,因为当应用于实际问题进行编程时,你可能会忘记这些内容。你只需了解一定的基础知识,并继续学习,要务实。不要试图完全了解所有知识,因为有时完美主义会给你的学习拖后腿。
关于Python、机器学习和深度学习的基础知识,我推荐以下书籍:
- Learning Python
- Python for Data Analysis
- An Introduction to Statistical Learning
- Machine Learning for Absolute Beginners
- Python Machine Learning
- Python Data Science Handbook
- Introduction to Machine Learning with Python
- Deep Learning with Python
- Deep Learning with Keras
5. 如何在理解商业问题和提高技术技能之间取得平衡?
在理解商业问题和制定解决方案之前,我首先去提高自己的技术技能。
商业问题在于”是什么”和”为什么”。要解决商业问题,首先必须解决问题,而技术技能是注重于”怎么做”。我的建议主要基于个人经验。
6.如何克服开启数据科学家职业生涯的挑战?
对于许多数据科学家来说,主要挑战就是数据科学是信息的海洋。我们可能失去方向,因为有太多的建议和资源,大量的在线课程、研讨会等等,你需要保持专注,知道你拥有什么,你需要什么。
在我的数据科学历程中,我主要通过这些方法克服这些挑战:
(1)有效地筛选学习资源
在刚开始时,我因为大量的资源感到困惑。通过听数据科学家的播客,阅读如何开启数据科学领域的文章,尝试不同在线课程。最终我关注我在本文中分享的这些优质资源。
(2)不要放弃
当学习过程太过艰难时,我开始怀疑自己,我真的有能力做到吗?我追求的道理是正确的吗?最终对数据科学的热情和耐心让我重新开始,继续不断努力和前行。
(3)获得数据科学相关的工作
由于就业市场竞争激烈,找到心仪的数据科学工作对我来说并非易事。我提交了大量的简历都毫无结果。因此我开始改进找工作的方法,参加聚会和研讨会,在网上分享我的学习经历,在招聘会上于潜在雇主接触等等。
7. 如何有效地在简历中加入自己的工作经验,从而提高被录用的几率?
这是一种误解,你并不能通过简历中的经验就被聘用。事实上,简历是面试的敲门砖。
因此,学习如何写简历对于获得面试机会至关重要。研究表明,招聘人员在确定求职者是否适合该职位时,平均看简历的时间仅为6秒。
关于完善简历,我推荐以下网站和文章:
- Vault
- TopResume
- Optimize Guide
- A Resume Expert Gives Career Advice
- https://www.facebook.com/businessinsider/videos/10153537949019071/
- How to Pass the 6-Second Resume Test
- https://www.topresume.com/career-advice/how-to-pass-the-6-second-resume-test
- How to tailor your Academic CV for Data Science roles
- https://www.linkedin.com/pulse/how-tailor-your-academic-cv-data-science-roles-jason-byrne/?trackingId=3ykuEpfW%2BISNc%2Fx9YFbIZQ%3D%3D
- What do Hiring Managers Look For in a Data Scientist’s CV?
- https://www.linkedin.com/pulse/what-do-hiring-managers-look-data-scientists-cv-ben-dias/
- The 14 Things You Need On Your Resume To Land Your Dream Job
- https://www.elitedaily.com/money/14-signs-you-have-a-strong-resume/617472
8. 怎样的作品集能帮助我们找到第一数据科学或机器学习方面的工作?
简历是不够的,你还需要作品集的支撑。在看了简历之后,招聘人员希望更多地了解你的背景,这时就需要作品集了。
可以试着在社交媒体平台分享自己的学习经历,写文章和做播客都是不错的选择。
更多资源
学习平台 :Towards Data Science, Quora, DZone, KDnuggets, Analytics Vidhya, DataTau, fast.ai
推荐视频:Webinars——Data Science Office Hours, Data Science Connect, Humans of Data Science (HoDS)
推荐文章:
- A Badass’s Guide to Breaking Into Data
- http://www.data-mania.com/blog/guide-to-breaking-into-data/
- 10 Must Have Data Science Skills
- https://www.kdnuggets.com/2016/05/10-must-have-skills-data-scientist.html?utm_content=buffer7c1a3&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer
- My Data Science & Machine Learning, Beginner’s Learning Path
- https://www.linkedin.com/pulse/my-data-science-machine-learning-beginners-path-vin-vashishta/?trackingId=J16vYmqLQEZ5wr4oElpnNA%3D%3D
- 24 Ultimate Data Science Projects To Boost Your Knowledge and Skills
- https://www.analyticsvidhya.com/blog/2018/05/24-ultimate-data-science-projects-to-boost-your-knowledge-and-skills/
值得关注的数据科学家
LinkedIn上的数据科学社区非常棒,以下是我认为值得关注的数据科学家和专业人士:
- Randy Lao
- Kyle McKiou
- Favio Vázquez
- Vin Vashishta
- Eric Weber
- Sarah Nooravi
- Kate Strachnyi
- Tarry Singh
- Karthikeyan P.T.R.
- Megan Silvey
- Imaad Mohamed Khan
- Andreas Kretz
- Andriy Burkov
- Carla Gentry
- Nic Ryan
- Beau Walker
结语
希望本文能够解决你的问题。每当你在数据科学旅程中遇到任何障碍,快要放弃时请记住,坚持是关键。
作者:Admond Lee
翻译:Mika
本文由 @Mika 翻译发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议
初学者考CDA证,有用吗
有用的,能考下来说明基础就已经具备了